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ABSTRACT 

Unlike an e a r l i e r  shock spec t ra  approach, t he  genera l iza t ion  

presented i n  t h i s  paper permits an a c c ~ r a t e  e l a s t i c  i n t e r a c t i o n  between 

t h e  spacecraf t  and launch vehicle  t o  obtain accurate  bounds on t h e  

spacecraf t  response and s t r u c t u r a l  loads.  In  addi t ion ,  t h e  modal 

response from a previc.11~ launch vehicle  t r a n s i e n t  ana lys is  - with o r  

without a dummy spacecraf t  - i s  exploi ted t o  def ine a m ~ d a l  impulse as 

a simple idea l i za t ion  of t h e  ac tua l  forcing function. The idea l ized  

modal forcing function i s  then used t o  der ive e x p l i c i t  expressions f o r  

an estimrrte of t h e  bound on t h e  spacecraf t  s t r u c t u r a l  response and 

forces .  

Greater accuracy i s  achieved with t h e  present method over t h e  

e a r l i e r  shock spec t ra ,  while saving much computational e f f o r t  over t h e  

t r ans i en t  ana lys is .  
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SECTION I 

A. BACKGROUND 

1. Transient  Analysis  

The determinat ion o f  t h e  i n t e r n a l  l o a d s  i n  a s p a c e c r a f t  s t r u c t u r e  

sub jec ted  t o  a dynamic launch environment is  an i t e r a t i v e  process  aimed 

at t h e  u l t i m a t e  s i z i n g  o f  t h e  s t r u c t u r e  f o r  i ts  design.  The process  

i s  i t e r a t i v e  because t h e  i n t e r n a l  l o a d s  i n  t h e  s p a c e c r a f t  a r e  dependent 

upon t h e  s p a c e c r a f t  mass and s t i f f n e s s  d i s t r i b u t i o n ,  as wel l  a s  t h e  

mass and s t i f f n e s s  d i s t r i b u t i o n  i n t e r a c t i o n  with t h e  launch v e h i c l e .  

Some of  t h e  key parameters t h a t  dominate t h e  loads  a n a l y s i s  process  

a r e  t i m e l i n e s s  of t h e  s i z i n g ,  c o s t ,  weight l i m i t a t i o n s ,  and low 

s e n s i t i v i t y  t o  i t e r a t i v e  changes i n  t h e  design.  Because t h e  loads  are 

time-dependent func t ions ,  a complete t r a n s i e n t  a n a l y s i s  aimed a t  d e t e r -  

mining responses t o  given time-dependent f o r c i n g  func t ions  is widely 

used throughout t h e  i n d u s t r y  t o  determine loads  i n  t h e  launch v e h i c l e  

and i n  t h e  spacecra f t .  The t r a n s i e n t  a n a l y s i s  i s  a s imulat ion method 

by which t h e  loads  t ime h i s t o r i e s  must be  computed i n  t h e i r  e n t i r e t y  

I : 
: ! 

before  peak va lues  can be i d e n t i f i e d  f o r  e s t a b l i s h i n g  design loads .  

Although a t r a n s i e n t  a n a l y s i s  t e n d s  t o  r e s u l t  i n  l igh tweigh t  

des igns  when proper ly  used,  it i s  u s u a l l y  c o s t l y  and t ime consuming, 

e s p e c i a l l y  when s e v e r a l  o rgan iza t ions  a r e  involved.  No b e t t e r  method 

i s  p r e s e n t l y  known when dea l ing  with a launch v e h i c l e ,  and it i s  no t  

su(-;c.:ested here t h a t  t h i s  process  be  changed f o r  t h e  launch v e h i c l e s .  An 

a l t e r n a t e  met hod is  presented,  however, f o r  t h e  a n a l y s i s  o f  t h e  

s p a c e c r a f t .  

'-1 . 4 i t e r n a t e s  t o  Transient  Analysis 

I n  t h e  a n a l y s i s  o f  an aerospace s t r u c t u r e ,  a t  l e a s t  two organi-  

za t ions  a r e  involved: one o rgan iza t ion  resporisible f o r  t h e  des ign and 

a n a l y s i s  of t h e  launch v e h i c l e ,  and another  f o r  t h e  s p a c e c r a f t .  For 

t h e  spacecraft-developing o rgan iza t ion ,  it i s  d e s i r a b l e  t o  perform 

frequent  bu t  inexpensive loads  ana lyses  t o  account f o r  f requent  desib:n 

1-2. 
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changes i n  t h e  s p a c e c r a f t .  I d e a l l y .  t h e s e  ana lyses  would inc lude  on ly  

t h e  s p a c e c r a f t ,  without r e q u i r i n g  launch v e h i c l e  modeling and without 

r e q u i r i n g  a c t i v i t y  a t  t h e  launch veh ic le  agency. For t h i s  reason,  

s e v e r a l  a l t e r n a t i v e s  have been suggested,  and References 1-1 and 1-2 

are r e c e n t  examples. Like t h e  method presented here ,  t h e  methods given 

in Heferences 1-1 and 1-2 apply  only  when t h e  l o a d s  i n  t h e  s p a c e c r a f t  

rt?suJ t from t ime-dependent f o r c i n g  f 'unctions app l ied  on t h e  launch 

v e h i c l e ,  and bypass most o f  t h e  c o s t l y  t ime consuming s t e p s  o f  a com- 

p l e t e  t r m s i e n t  s o l u t i o n .  

3.  Reduced Trans ien t  Analysis Method 

The method of  Reference 1-1 is  a reduced t r a n s i e n t  a n a l y s i s .  

Acce le ra t ions  at t h e  spacecraf t - launch v e h i c l e  i n t e r f a c e  a r e  obta ined 

by a s i n g l e  t r a n s i e n t  a n a l y s i s  o f  t h e  launch v e h i c l e  wi th  a r i g i d  mass. 

From t h i s  s i n g l e  launch v e h i c l e  a n a l y s i s ,  i n t e r f a c e  a c c e l e r a t i o n s  

can then be  c o r r e c t e d  t o  account f o r  t h e  e l a s t i c i t y  of t h e  s p a c e c r a f t  

and used as inpu t  t o  t h e  s p a c e c r a f t .  The c o r r e c t i o n  procedure requ:'.res 

knowledge o f  t h e  c h a r a c t e r i s t i c s  o f  t h e  e l a s t i c  s p a c e c r a f t  and o f  t h e  

r i g i d  mass /e las t i c  launch v e h i c l e ,  bu t  does not r e q u i r e  t h e  a c t u a l  

i n t e g r a t i o n  o f  t h e  spacecra f t  e l a s t i c  model wi th  t h e  launch v e h i c l e  

e l a s t i c  model, r e s u l t i n g  i n  a s i g n i f i c a n t  c o s t  r educ t ion .  From t h e r e  

on, t h e  procedure follows t h e  usua l  t r a n s i e n t  a n a l y s i s .  

4. Shock Spectra  Method 

Like t h e  approach presented h e r e ,  t h e  method of Reference 1-2 is  

a g e n e r a l i z a t i o n  of t h e  t r s d i t i c n a l  shock s p e c t r a  concept.  I n  t h i s  

concept,  shown i n  Figure  1-1, a shock spectrum ~ ( w ,  5 )  of a func t ion  

2 ( t )  is t h e  l a r g e s t  peak response of a single-degree-of-freedom 
0 .. 

o s c i l l a t o r  sub jec ted  t o  t h e  base  f a r c i n g  func t ion ,  x o ( t , ) .  The i m p l i c i t  

assumption i s  made t h a t  t.he inpu t  fo rc ing  func t ion ,  ? ( t ) ,  i s  not 
0 

a f f e c t e d  by t h e  presence o f  t h e  o s c i l l a t o r .  T h i s  i s  t r u e  only i f  t h e  

mass of t h e  o s c i l l a t o r  i s  i n f i n i t e s i m a l .  

The most s i g r ; i f i c ~ a t  f e a t u r e  of R e f ~ r e n c e  1-2 was t h e  i n t r o d u c t i o n  

of t h e  r e l a t i v e  impedance between t h e  spacecra f t  and t h e  launch v e h i c l e ,  



S(u, 6 )  

t TIME 

F i e  1 .  Shock Spectruni S(w, 5 )  of a F u n c t i o n  Y 0 ( t )  



i . e . ,  between t h e  o s c i l l a t o r  and t h e  base ,  i n  t h e  form of a reduc t ion  

f a c t o r ,  C ,  which accounts f o r  t h e  e f f e c t  o f  t h e  o s c i l l a t o r  on t h e  i n t e r -  

f ace  a c c e l e r a t i o n .  In  a d d i t i o n ,  an envelope i s  cons t ruc ted  f o r  t h e  

a c c e l e r a t i o n  spectrum a t  t h e  i n t e r f a c e  between t h e  s p a c e c r a f t  and lalinch 

veh ic le ,  Figure 1-2, which i s  used t o  deterr .~ine t h e  l e v e l  of  an equiva- 

l e n t  s i n u s o i d a l  f o r c i n g  func t ion  t o  be app l ied  a t  t h e  i n t e r f a c e  fcr  t h e  

computatios o f  t h e  spacecra f t  member l o a d s .  Tn t h i s  manner, s p a c ? c ~ * a f t  

loads  a r e  computed with no i n t e g r a t e d  launch l r p !  i ~ l e / s p a c e c r a f t  t r a n s i e n t  

a n a l y s i s .  This method was app l ied  t o  s e v e r a l  spacecra f t  s t r l l c t u r e s  as 

repor ted  i n  Reference 1-3, and was found t o  be much l e s s  c o s t l y  t o  

use ,  but  produced somewhat heav ie r  s t r u c t u r e s  than a t r a n s i e n t  a n a l y s i s .  

I n  t h e  a p p l i c a t i o n  of t h e  e a r l y  shock s p e c t r a  method o u t l i n e d  

above,a  number o f  assumptions were in t roduced t h a t  made i t s  s u c ~ e s s f u l  

usage h igh ly  dependent upon t h e  a n e ' y s t ' s  i n t u i t i v e  a b i l i t y  t o  recognize 

launch veh ic le  modes t h a t  a r e  important t o  r e t a i n ,  and those  o f  i n s i g -  

n i f i c a n t  e f f e c t s  t h a t  can be discarded.  The method s e n s i t i v i t y  t o  t h e  

a n a l y s t ' s  judgment i s  h igh l igh ted  i n  t h e  t a c i t  assurr.ption t h a t  t h e  

spacecraf t / launch v e h i c l e  i n t e r f a c e  response i s  doxtnated a:~r,ost t o t a l l y  

by one launch v e h i c l e  mode at  any one frequency, and ir: t h e  process  by 

which t h e  envelope o f  t h e  shock s p e c t r a  i s  constiSucted.  

5. The Generalized Shock Spectra  Method 

The p resen t  approach i s  an extension of Reference 1-2, wi th  t h e  

o b j e c t i v e  o f  e l i m i n a t i n g  t h e  a n a l y s t  ' s judgment, formal iz ing t h e  

d e r i v a t i o n  and ccmputational s t e p s  of t h e  approach,  e x p l i c i t l y  s t a t i n g  

t h e  necessary assumptions, r e l a x i n g  u n e s s e n t i a l  ones,  and in t roduc ing  

s e v e r a l  s i g n i f i c a n t  improvements. These w i l l  be discussec? i n  subsequent 

s e c t i o n s .  

B. OUTLINE OF TIiE GENERAI'IZED SHOCK SPECTRA 

The fol lowing general  observat ions  a r e  fundamental t o  understand- 

i n g  t h e  r a t i o n a l e  o f  t h e  shock s p e c t r a  approaches: 

( 1 )  The genera l  o b j e c t i v e  i s  t o  avoid t h e  c o s t  o f  a launch 

vehiclelnew spacecra f t  o v e r a l l  t r a n s i e n t  a n a l y s i s .  
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2 There has been a previous dynamic aha lys is  done f o r  t h e  

l.aunch vehicle  with another o r  a dummy spacecraf t ,  t h e  

r e s u l t s  of which a re  used as inputs  t o  t h e  generalized 

shock spec t ra  nethod. Note t h a t  t h e  present method i s  

derived f o r  use of t he  modes of  t h e  launch vehicle  loaded, 

by a r i g i d  =ass only, o r  not loaded. I f  adch an ana lys is  

is  not ava i lab le ,  t h e  proper da t a  can s t i l l  be r-covered 

from t h e  ana lys is  of  t h e  launch vehicle  loaded with an 

e l a s t i c  spacecraf t  a s  shown i n  1;; gendix C.  

( 3 )  The s t r u c t u r a l  ana lys t  needs only t o  determine t h e  worst 

case load maxima o r  bounds, r a t h e r  than time h i s t o r i e s ,  

of t h e  s t r u c t u r a l  response. Since maxima o r  bounds a r e  

t he  object ive of t h e  shock spec t ra  concept, a shock spec t ra  

approach is read i ly  appl icable  t o  t h e  s t r u c t u r a l  design 

process. 

( 4 )  Any loads ana lys is  - t r a n s i e n t ,  shock spec t ra ,  o r  other  - 
incorporates two basic  items: a model ideal i ,z ing t h e  

dynamic environment, i .e. , t he  forcing funct ion,  and another 

i d e ~ l i z i n g  t h e  composite s t r u c t u r a l  system. The form of 

each model is influenced by t h e  select,ed approach, while 

i t s  complexity is constrained by cos t  and time. 

( 5 )  The o r ig ina l  launch vehicle  forcing funct ions,  usual ly 

unknown t o  the  spacecraf t  ana lys t ,  may be idedi ized  by a 

simpler form t o  obtain an e x p l i c i t  closed form so lu t ion .  

A complete de f in i t i on  of t h i s  i dea l i za t ion  i s  poss ib le  from 

t h e  previous ana lys is  of item (1) above, cind is  done a t  

t he  modal Level. 

In view of these remarks, the generalized shock spec t ra  method 

i s  hiehl iphted as follows : 

F i r s t ,  the modal forcing functicw ~ ~ ( t )  corresponding t o  t he  

modes of t he  launch vehicle loaded by a r i g i d  mass at t h e  spacecraf t  

in te r face ,  and represent ing the  medal cont!=ibution of an actu . f l i g h t  



event, is modeled, regardless o f  its physical  point of appl ica t ion ,  by 

at. equivalent launch vehic le  modal forc ing  function, FeL( t ) .  Unlike 

the ac tua l  complex t r a n s i e r t  force,  t h e  equivaleni  furc ing  function 

chosen is a simpler form of va r i a t i on  with time. Here, an impulse 

d e l t a  f i c t i o n  ~ , ~ ( t )  = FOX6(t) with a yet-lmkoovn magnitude F 
OR' Or 

equivalent ly a ve loc i ty  with mag~~i tude  vO1, is chosen f o r  convenience. 

The choice o f  a s impl i f ied  forcing function as an impulse 

emphasizes t h e  view t h a t  t h e  shape of t h e  response t i m e  h i s to ry  i s  o f  

no consequence, and t h a t  only t h e  peak o r  bound of t h e  resy;onse is o f  

i n t e re s t .  Therefore, any forcing funct ion t h a t  would reproduce a 

respcuse with t h e  same niaximum peak o r  bound a s  tire actual forcinr, 

function is  acceptable. Tne eq-uivalency between the  ac tua l  forcing 

function rtfid t h e  ideal ized one is es tab l i shed ,  not on t1. t  b a s i s  of 

producing iden t i ca l  response time h i s t o r i e s ,  but on the  bas i s  of pro- 

ducing an iden t i ca l  peak ~ ? f  t h e  shock spec t ra  of each o f  t h e  launch 

vehicle modal response 5 (t), Figure 1-3, derived from the  previously 
V. 

performed launch vehiclejdummy spacecraf t  ana lys i s .  An a l t e r n a t e  t o  t he  

d i r e c t  use o f  (t) is  discussed later. 
11 

The use of' modal shock spec t ra ,  r a t h e r  than t h e  i n t e r f ace  degrees- 

of-r'reedorn shock spec t ra  is s ign i f i can t  bec tuse it automatically 

accounts for  t he  mazchinp of  a l l  i n t e r f ace  physical degrees of freedom, 

and allows one t o  determine the  modal magnitude of  t he  impulse FOE o r  

ve loc i ty  v 02- It is qoteworthy t h a t  t h e  above process of e s t ab l i sh ing  

t h e  equivalent ideal ized fo rc j  r~g function requi res  knowledge of t h e  

modal proper t ies  of t hc  launch vehicle  with o r  witllout a payload. Such 

information is  usually ava i lab le  from t h e  launch vehicle  organization. 

Also note t h a t  t l ie r i g i d  mass at t h e  launch vehicle/spacecraf t  i n t e r f ace  

does not have t o  be the  t o t a l  mass of t h e  spacecraf t  t o  be analyzed, 

but can have any value convenient f o r  t h e  t r ans i en t  ana lys is  performed 

e a r l i e r  on t h e  launch vehicle .  The present approach does cor rec t  f o r  

whatever mass value was used. 

Second, i n  considerir~g t h e  composite s t r u c t u r a l  system of 

Figure 1-2, which cons is t s  of  a spacecraf t  modeled by S-normal modes 

and a launch vehicle  modeled by L-normal modes, t he re  w i i l  be (S  +' L) 
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modally coupled equhtions o f  motion. W i k e  t h e  t r ans fen t  ana lys i s  

w h e r e  the so lu t ion  is expressed i n  t h e  complete (S + L) space o f  modal 

coordfnat ts  and time, a bound on t h e  complete so lu t ion  is es tab l i shed  

h e r t i  n by : 

Idea l iz ing  t h e  t o t a l i t y  o f  (S + L) mathematical space 

of modal coordinates by an array of  nested (S x L) mathe- 

matical  subspacss, i n  each o f  which only one spacecraf t  

mode is indiv idua l ly  c?upled with one launch vehicle  mode. 

In  t h i s  fashion, each spamcraft mde is coupled wi th  

L-launch vehicle  modes one at a time. To derive a bound 

on t h e  t o t a l  so lu t ion  i n  t h e  o r i g i n a l  (S + L) mathematical 

space, an e x p l i c i t  so lu t ion  i n  t h e  form of spacecraf't 

modal response time h i s t o r y  is f i r s t  derived f o r  t h e  p a i r  

o f  modes i n  a t y p i c a l  subspace. The e x p l i c i t  form of  t h i s  

so lu t ion  is derived here,  and is  based on t h e  idea l ized  

nodal forc ing  function j u s t  discussed. Furthermore, 

because t h e  spacecraf t  member loads a r e  t h e  obJect ive of 

t h e  analysis ,  and s ince  these  are proport ional  t o  t h e  

generalized modal displacements, t h e  response quan t i t i e s  

used here a r e  generalized modal displacements , q s k ( t ) ,  frcm 

which an expression of t h e  bound Q of q ( t )  is then s Y, s a 
derived. 

(2) Numerical computations a r e  made first t o  e s t ab l i sh  t h e  

bounds, Q on each of t h e  (S x L) d i s c r e t e  modal responses. s a 9  
Each bound Qsl corresponds t o  one of t h e  (S x L )  subspaces. 

Tn account fo r  unknown design tolerances and va r i a t i ons  i n  

t h e  s t r u c t u r a l  model i dea l i za t ion ,  worst cases  can be 

provi ded by allowing r e a l i s t i c  possible  tuning between each 

spacecraf t  mode and i t s  nearest  launch vehicle  mode, and by 

sc.ali-ng t h e  entire freq-uency spectrum of t h e  launch vehicle  

w i t h  respect  t o  t h a t  of t h e  spacecraf t .  

( 3 )  Next, a bound cn t h e  t o t a l  spacecraf t  modal response, Qs, 

is  constructed by sunmation over a l l  t he  d i sc re t e  L-bounds 

f o r  t f i & %  spacecraf t  mode. The summation can bc over 



absolute values, o r  i n  a root-sum-square sense t h a t  can 

a l so  be weighted t o  account f o r  phasing. 

(4 )  Finally, spacecraft member loads are obtained by adding 

the  contr ibutiaas of all spacecraft modes, e i t h e r  i n  

absolute value o r  i n  a root-sum-square sense. 

In t h e  procedure outl ined above, s teps  (1) and (2) derive expres- 

s ions f o r  bounds on t h e  d i sc re te  response, Q i n  each o f  the  (S x L) st' 
modal subspaces, a i l e  s t eps  ' 3) and (4 )  construct e bound on the  

complete solut ion i n  t h e  t o t a l  (S + L) space iM. t h e  d i sc re te  Qst 

bounds. In t h i s  manner, much cosaputational e f f o r t  is sared over t h e  

usueil t rans ient  analysis.  

The s igni f icant  improvements o r  differences f r o m  Reference 1-2 are : 

(1) Ideal izat ion of the  ac tual  forcing function by an impulse 

pennits a simple evaluation o f t h e  shock spectra peaks. 

Other forms of  forcing function ideal iza t ions  could a l so  

be deal t  with i n  t h e  least square sense. 

(2) The shock spectra matching is applied t o  the  modal - r a the r  

than the  physical - degrees o f  freedom. This  gives 

greater f l e x i b i l i t y  and more general i ty i n  t h e  applicat ion 

of t h e  procedure. 

( 3 )  The modal displacement spectra,  Qse, is derived fo r  an 

a rb i t r a ry  p a i r  of coupled modes, a launch vehicle mode 

and a spacecraft mode, regardless of the  proximity of t h e i r  

associated natural  frequencies. Thus, the  a p r io r i  se lec t icn  

of a speci f ic  launch vehicle mode on the  bas is  of its rela-  

t i v e  significance i n  pair ing with a given spacecraft mode 

is not required. 

( 4 )  l'he e n t i r e  treatment is  believed t o  lend i t s e l f  more 

readily t o  an automated spacecraft loads analysis  tha t  i s  

substantial ly l e s s  dependent upon the  analyst 's  i n t u i t i v e  

a b i l i t y .  
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C. BASIC Assm1oNS 

Other t h h  t h e  usual assumption o f  l i n e a r i t y  of  s t r u c t u r a l  behavior 

for both t h e  spacecraf t  and launch vehicle ,  t h e  following assumptions 

3re made here: 

( 1 )  The mass (and i n e r t i a )  r a t i o  between t h e  spacecraf t  and 

t h e  launch vehicle  is small, b ~ k  not necessar i ly  

inf in i tes imal .  

(2) The in t e r f ace  between t h e  spacecraf t  and t h e  launch vehic le  

is assumed s t a t i c a l l y  determinate. 

( 3 )  No ex te rna l  forces  are ac t ing  d i r e c t l y  upon t h e  spacecraf t  

o ther  than through t h e  common launch vehicle/spacecraf t -  

in te r face .  

(4) A t r a n s i e n t  ana lys is  o f  t h e  launch vehicle  with o r  without 

a dummy spacecraf t  is avai lable .  

Assumptions 1 and 2 a r e  not overly r e s t r i c t i v e ,  and could be 

relaxed without much d i f f i c u l t y .  Removing assumption 2 would requi re  

introducing more complex bas i c  equations. Assumption2can a l s o  be dea l t  

with by introducing a port ion of t he  1r.u.nch vehic1.e i n t e r f ace  i n  t h e  

cpbcecraft  -idel. Other lesser assumptions a r e  a l s o  made, and w i l l  be 

s t a t e d  i n  subsequent sec t ions  as they a r i s e .  



SECTION I1 . 
BASIC EQUATIONS 

A der iva t ion  of t h e  equations of motion of a damped l i n e a r  

s t r u c t ~ r ~  1 system under t h e  ac t ion  of prescribed forces  {F ( t ) l  and 
j 

prescribed r i g i d  body acce lera t ions  { s ( t j !  '?an be found i n  t h e  l i t e r a -  

t u r e  (Reference 2-11. For each normal mode n = 1, 2, , N,  t h e  

equations may be wr i t ten  i n  t h e  following form: 

2 
M nn (Gn + P E  n n n  4 + un B )  = < ( n j > { ~ J }  - CM~<{%} ( 1  

where , 
.. 
N = prescribed r i g i d  body base motion 

'n 
= generalized modal. coordinates t h a t  a r e  r e l a t ed  t o  t h e  

physical degrees-of-freedom, {u) ,  by the  normal modes, [9 ] , 
n 

such t h a t  t u  1 = [mjn]t$} 
J 

{mn) = normal mode shape associated with $; it i s  designated by 

",jnl 
when evaluated at the  jth physical degree-of-freedom 

5 = percent o f  c r i t i c a l  modal damping f o r  t h e  nth mode 
n 

u = natura l  frequency of t h e  system, associated with q (mn}, n n ' 

<MnR> = mass coupling between e l a s t i c  and r i g i d  body modes 

Mnn 
= elements of t h e  diagonal modal mass matrix whose normalization 

is subsequently chosen so t h a t  M = 1 f o r  a l l  modes 
nn 

{F1) = time var iab le  vector  of forces  applied a t  an a r b i t r a r y  loca t ion  

j due t o  an a r b i t r a r y  event 



Equation (1) can be applied t o  a spacecraft mounted 0n .a  launch 

vehicle through a s t a t i c a l l y  determinate in ter face  a s  shown i n  Figure 1-2. 

Using subscripts  s, i, and i t o  designate quant i t ies  associated, respec- 

t ive ly ,  with the  spacecraft,  the  launch vehicle, and t h e i r  common 

in ter face  i, Equation (1)  can be separately wri t ten fo r  the  spacecraft 

and t h e  launch vehicle by taking proper account of t h e  reaction forces,  

(Pi}, and accelerations, ( ~ ~ 1 ,  at the  interface.  The r e s u l t s  are: 

for  the  ith normal mode of t h e  free-free launch vehicle 

'or the  sth normal mode of t h e  spacecraft,  cantilevered from i ,  

In Equations (2)  and ( 3 ) ,  the  interface accelerat ion,  {gi),  i s  

obtained by superposition of the  contributions of a l l  launch vehicle 

modes, r i g i d  and e l a s t i c :  

The launch vehicle r i g i d  body acceleration ( q  above is  obtained as a R 
special  case of Equation (2 )  when w = 0: R 

Furthermore, t h e  react ion forces, {Fi ls  on the  s t a t i c a l l y  determinate 

spacecraft-to-launch vehicle interface are obtained by summing the  

reactions f o r  a l l  spacecraft modes T: 



i n  which [m:i] is t h e  con tk ibu t ion  of e a c h  mode s t o  t h e  r i g i d  mass 

m a t r i x  relative t o  t h e  i n t e r f a c e  i. The fol lowing r e l a t i o n s h i p  ho lds  

for each  node s : 

Rather t h a n  inc lud ing  a l l  spacecraft  modes, only a t r u n c a t e d  o r  s e l e c t e d  

set of modes S < T are u s u a l l y  r e t a i n e d .  Such t r u n c a t i o n  o r  s e l e c t i o n  

may be done by inc lud ing  a r e s i d u a l  r i g i d  mass [M ] def ined  by ii R F S  
(Reference 2-2 ) : 

where [M. . ] is t h e  t o t a l  r i g i d  body mass mat r ix  when a l l  T modes are 
11 

considex-ed ; 

Therefore,  Equation (6) f o r  {F. 1 ,  can i n  genera l ,  be rep laced  by: 
1 

111 Equation (8 ) ,  t h e  neglected ~ncdes n r p  i-epresented hy t h e i r  

equ iva ien t  r i g i d  mass, r e g a r d l e s s  whether t h e i r  f requencies  a r e  h igher  

o r  lower than t h e  range i n  ques t ion .  Tn t h i s  manner one is  ab1.e t o  

cons ider  t h e  e l a s t i c  mass contrib?~?it.ir,ns cf as few r 8 r  as many s y a c e c r a f t  

modes as des i rah l -e ,  wi th  t h e  rer:lainirl~: rnodes contr ibut i r i r :  t o  t h e  

r e s i d u a l  r i g i d  mass. A g r e a t e r  number of e l a s t i c  modes r.csu1.t i n  a 

smaj le r  r e s i d u a l  r i g i d  mass matr ix ,  which approaches zero  when a l l  

e l a s t i c  modes have been included.  From a modelin(: p o i ~ ~ t  o f  v i e w ,  such 



a residual rslass matrix can also have a wide range of applications in 

reprerenting the arass characteristics of part or all of the spacecraft 

during the vorious cycles of loads analysis. In particular, the residual 

maas term allows the analyst to use directly the modes of the launch 

vehicle loaded by a rigid mass. 

For S-spacecraft and L-launch vehicle elastic modes, Equations (2 )  

and ( 3 ) ,  along with their companion expressions (4). ( 5 ) ,  and (8) result 
in (S + L) coupled equations describing the motion of the composite 
spacecraft-launch vehicle system. Instead of the commonly used transient 

analysis for the solution of this system of equations, a generalization 

of the shock spectra concept will be developed next, with the aim of 

obtaining a bound on the solution rather than its detailed time history. 
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SECTION 111 

GENERALIZED MODAL DISPLACEMENT SPECTRA 

A. IDEALIZED FdQUATIONS 

I n  a f u l l  t r a n s i e n t  a n a l y s i s  o f  t h e  coupled ( S  + L )  Equations ( 2 )  

and (31 ,  a l l  modes a r e  s imul taneously  considered,  and t h e  s o l u t i o n  i s  

sought a s  t i m e  h i s t o r i e s  o f  t h e  response q u a n t i t i e s  o f  i n t e r e s t .  Since 

bounds r a t h e r  than time h i s t o r i e s  a r e  needed f o r  d e s i p ,  much computa- 

t i o n a l  e f f o r t  can be saved by in t roduc ing  mathematical i d e a l i z a t i o n s  

t h a t  a l low a r e l a t i v e l y  s imple  e s t i m a t e  o f  t h e  bounds. This  i s  achieved 

here  when t h e  e n t i r e  ( S  + L) mathematical space o f  modal coord ina tes  is 

i d e a l i z e d  by an a r r a y  of nes ted  ( S  x L) mathematical d i s c r e t e  subspaces.  

I n  each subspace, a s p a c e c r a f t  mode s i s  coupled wi th  a launch v e h i c l e  

mode R ,  t h u s  g iv ing  r i s e  t o  ( S  x 1,) p o s s i b l e  p a i r i n g s .  A bound on t h e  

t r u e  s o l u t i o n  i n  t h e  ~ w i g i n a l  ( S  + L )  mathematical space is  e s t a b l i s h e d  

by summation over t h e  i n d i v i d u a l  d i s c r e t e  bounds i 1 1  t h e  ( S  x I,) 

subspaces. 

Because t h e  s p a c e c r a f t  member l o a d s  are t h e  o b j e c t  o f  t h e  a n a l y s i s  
8 

here ,  and s i n c e  t h e s e  a r e  p ropor t iona l  t o  t h e  generalized modal d i s -  

placements q , bounds on t h e  s p a c e c r a f t  rnember lvads  a r e  expressed i n  
s 

terms of t h e  bounds, Qsg,, o f  t h e  genera l i zed  modal displacements f o r  

ecch subspace. . A t y p i c a l  genera l i zed  modal riisplacement bound, QSV 
is der ived  here  f o r  a  t y p i c a l  subspace i n  which - one spacecraf ' t  mode q s 
i s  coupled with one launch v e h i c l e  mode qQ. For th?'.s purpose, Equatioxs - 
( b ) ,  (5), and (8)  a r e  solved t o g e t h e r  t o  y i e l d :  



where 

1 
T f  t he  r a t i o  of t h e  Euclidian norm of the  r i g i d  mass matrix, [M:~] 

defined above f o r  t h e  spacecraft,  t o  the  norm of the  t o t a l  r i g i d  lacnch 

vehicle mass matrix, [%I, i s  s m a l l ,  a simplifying approximation can 

be introduced i n  Equation (g ) ,  i n  which 

.. 
This r e s u l t s  i n  the  approximate s e t  of equations fo r  {Ri} and ( ~ ~ 1 :  

which, when subst i tuted in to  Equations ( 2 )  and ( 3 ) ,  yie lds  the  following 

simplified version of t h e  equations of motion for  an a rb i t r a ry  pa i r  of 

coupled spacecraft and launch vehicle modes: 

'AS a measure of t h e  magnitude of a matrix A, t he  Euclidian norm i s  
defined i n  analogy with the  length of a vector by 

where a are the  elements of A. 
i J  



Note t h a t  removing t h e  assumption t h a t  l ead  t o  Equation (10)  w i l l  r e s u l t  

only i n  redefining t h e  terms of Equations (11) and (12) .  Also, although 

similar t o  Equation ((2-5) of Appendix C ,  Equation (12)  holds fo r  only 

one launch vehicle  mode and one spacecraf t  mode a t  a time, unlike 

Equation ( C - 5 ) ,  which holds f o r  a l l  modes. 

In  Equation (12) ,  

Then, Equation (12) can be  r e w r i t t e n  i n  t h e  fo l lowing more convenient  

fonn: 



in  which the following additional definitions have been used: 

B. MODAL DISPLACEMENT SPECTRA 

The p a i r  of modally coupled equations i n  Equation (13) describe 

t h e  motion i n  any of t h e  idea l ized  (S x L) subspaces where a spacecraf t  

mode is coupled with a launch vehicle  mode. A bound on the  spacecraf t  

generalized modal displacement i n  such subspace is derived i n  t h i s  

sec t ion  from an e x p l i c i t  time-dependent sctlut ion of Equation (13), i n  

which t h e  ac tua l  launch vehicle  modal forcing function ~ ~ ( t )  is modeled 



by an equ iva len t  f o r c i n g  f u t ~ c t i c n  having a s impler  for;[, o f  val*int ion 

wi th  time. The s e l e c t e d  i d e a l i z a t i o n  o f  t h e  f o r c i n g  func t ion  i s  an 

impulse d e l t a  func t ion  having a magnitude F , or  a l t e r n a t i v e l y ,  an  0  a 
i n i t i a l  v e l o c i t y  wi th  a magnitude vOk. 

The equivalency between t h e  a c t u a l  f o r c i n g  funct ion and t h e  i d e a l i z e d  

one is  e s t a b i i s h e d  on t h e  b a s i s  o f  producing i d e n t i c a l  bounds on t l z  

modal displacement. This requirement y i e l d s  one rqua t ion  f o r  t h e  

d e f i n i t i o n  o f  t h e  magnitude o f  t h e  i r i i t i a l  impulse o r  v e l c c i t y .  The 

cfioice o f  an i n i t i a l  impulse o r  v e l o c i t y  a s  an i d e a l i z a t i o n  o f  t h e  

a c t u a l  f o r c i n g  fi lnction i s  made here  only f o r  s i m p l i c i t y  o f  t h e  r e s u l t i n g  

s o l u t i o n .  Ir f a c t ,  any o t h e r  choice  of t ime v a r i a t i o n  fo r  t h e  i d e a l i z e d  

fo rc i r : .  func t ion  is accep tab le ,  provided t11at t h e  a h o t ~  mentioned 

equivalency condi t ion i s  enforced.  For example, a  s i n i ~ s o i d a l  i d e a l i z a -  

t i o n  ( a s  i n  Reference 3.-2) i n  tertils of two unknown parameters,  a  may;rri- 

tude  and a frequency, could be used.  By enforc ing  more than  two condi- 

t i o n  equa t ions ,  one could dete-mine t h e  two unknowns, magnitude and 

frequency, i n  t h e  l e a s t  square  sense .  Functions o f  h igher  n m b e r  of' 

known p a r m e t e r s  could be d e a l t  wi th  i n  a  similar fash ion .  

An analog computer s o l u t i o n  o f  Equation ( 1 3 )  i s  given i n  Appen- 

d i x  A f o r  a  modal d e l t a  funct ion impul.se o f  magnitude F associateci 
02' 

with a laurich vehic1.e mode R. Also, d e t a i l s  o f  t h e  a n a l y t i c a l  s o l u t i o n  

t o  t h e  same equat ions  a r e  .given i n  Appendix B f e r  t h e  equ iva len t  modal 

i n i t i a l  v e l o c i t y  v 
011' 

The a n a l y t i c a l  expressioris  f o r  x l ( t )  wid x 2 ( t )  

are w r i t t e n  as: 



2 2 
n l ( l  A 02) -F or t - - - e n2 n2 s i n  w t 

W 
n2 

n2 - 1  

- -  I e -Sn2Wn2t s i n  Gn2t 1 - 
w n2 

The following parameters have been used i n  Equation (15):  



The objective is t o  d e t e ~ e  the maximum value of t h e  displacement 

x2(t)  re la t ive  t o  the %e m t i o n w  xl( t) .  The maximll value of 

x2( t )  i a  ca l led  the w ~ n e r 8 1 i z e d "  displacement shock a p c t r a  since 

t h e  nbase a c c e l e r ~ t i o n *  i l ( t )  is allowed t o  be affected by i 2 ( t ) ,  unlike 

the  simple t r ad i t iona l  shock spectra concept. To derive relatively 

simple expressions requiring minimal numerical calculat ion for  the  

generalized modal displacement spectra, fur ther  mathematical simplifica- 

t ions  wi l l  be introduced i n  Equations (15) and (16). These simplifica- 

t ions  were t e s t ed  and found accurate when t h e  results belov vere 

colltpared v i t h  t h e  resu l t s  of t h e  analog solution of Appendix A. 

2 Fi r s t ,  s ince and 6E2 are much smaller than unity, the  n l  
approximation 

- for  R # 0: t 'n1 ' 'n2 ' 'n 2 

for  R = 0: 52 = -  
En 2 

is used for  the damped natural frequencies and ; so that: 
n2 ' 

where 

W2P1 = W2RO A T  = damped center frequency 

2 R J 1 - c n  (1)2C)2 = W2 2 = damped beat frequency 

( l a )  

(19) 



dote that  the  approximation of Equation (17) is not used fo r  the  

exponentid part of the  solution. Also note hn/2Slo = p2/p1. 

Furthermore, according t o  Equation (16), 0 << 8. In fact ,  0 tends 

t o  be exceedingly small i n  t h e  neighborhood of R = 1. Therefore, it 
6 t 

is sufficient  t o  re ta in  only the first order approximation for  e , 
i.e., eot 1 1 + e t ,  and correspondingly e-Ot = 1 - 0t.  This approxi- 

mation, along with tha t  of Equation (17) and some trigonometric trans- 

formations, lead t o  the  following simplified expression for  the re la t ive  

displacement x2( t ) for  the  spacecraft mode : 

where 

= 1 - e r )  e-" s i n  P r COS p21 
2 1 

2W2P2 

~ ~ ( 1 1  - 2 e ~ )  e - ~ ~  cos p 1 T s i n  p 2 r 

2w2P1 

For R # 0: s ince  p is smaller than pl, sn accura te  estimate of 2 
t h e  maximum value o f  t h e  r e l a t i v e  displacement x2 ( t )  of  Equation (20) 

is provided by t h e  d i s c r e t e  maxima D of  t h e  simple s inusoid,  where max 
cos p T and cos p T are e i t h e r  zero o r  un i ty ,  ( see  Figure 3-1). When 

1 2 
D ( T )  a ~ p r o a c h e s  i ts  maximum Dlmax, D ( T )  approaches zero,  and v ice  
1 2 

versa.  Therefore, t h e  maximum r e l a t i v e  displacement C i s  given by t h e  
max 

l a r g e s t  o f  Dlmax 
Or D2max: 



02(3 

TRUE MAXIMUMm 

e 

Figure 3-1. Graphic Representation of Dl( t ) , D2( t ) . and 
Their Approximate Maxima Dlmax and DZmax 



*re t is determined as t h e  smdLlest root of  t h e  cha rac te r i s t i c  

equations 

& J. A C 

-Or Dl*ax : tan P I T  8 
1 + (P1/P2) ( 1  - B T )  

C L A f a r  Dm: t a n  P T = - 2 ' r~ + (o2/p1) 8 (1 - 8 ~ ) ]  

The def in i t ions  introduced i n  Equation (14) and the  equa l i t i e s  

of Kquations (21) and (22) are now combined t o  give the  generalize?. 

anodal displacement spectra,  Qse : 

Equation (23) above, along with i ts  companion expressions of Equa- 

t ions  (21) and (22) represent a generalization of the  t r a d i t i o n a l  

shock spectra concept s ince these expressions account f o r  in terac t ions  

between the  o s c i l l a t o r  and its base, i.e., between t h e  spacecraft and 

launch vehicle modes. They a l so  represent an improvement over thi. 

r e s u l t s  of Reference 1-2 i n  t h a t  they hold t r u e  f o r  an a rb i t r a ry  p a i r  

of coupled modes, a launch vehicle mode and a spacecraft mode, regard- 

l e s s  of t h e  proximity of  t h e i r  respective na tu ra l  frequencies. It is 

t h i s  f a c t  t h a t  makes it possible i n  the  present approach t o  include 

contributions of all launch vehicle and spacecraft modes i n  t h e  com- 

putation of bounds on the  modal displacements and subsequently on t h e  

member loads. It is noted here t h a t  Equation (21) suggests t h a t  t h e  

damping e f fec t  is through the  "average" damping 6 of the  spacecraft 

and the  launch vehicle as defined i n  Equations (16) r a the r  than through 

each damping separately. This point is explained fu r the r  i n  Appendix A. 

Although derived f o r  R # 0 ,  Equation (23) is sti l l  va l id  i n  the  l i m i t  

for  R + 0. This is shown i n  Appendix D, 



The generalized shock spectra w i l l  be i d e n t i c a l  t o  t h e  t r a d i t i o n a l  

shock spectra i n  the limit when, i n  Equation (23). t h e  r 8 s  r a t i o ,  vet 
defined by Eq. (14) f o r  t h e  o s c i l l a t o r  equivalent  spacecraf t  mode, is 

allowed t o  approach se ro  while t h e  associated s t i f f n e s s  increaser  such 

t h a t  the na tu ra l  irequcncy is he ld  unaltered. This i s  t h e  case o f  t h e  

shock spectrum of a rigidly-loaded launch vehic le  mode. This remark w i l l  

be useful  subsequently, i n  eva lua t ing  t h e  i n i t i a l  ve loc i ty  vW o f  

Equation ( 23 ) . 
Generally, however, f o r  each set o f  parameters A, y , El, E2, 

... , e t c ,  descr ibing t h e  c h a r a c t e r i s t i c s  o f  a spacecraf t  mode s, and a 

launch vehicle  mode 11, Muations (21),  (22),  and (23 ) w i l l  y i e l d  an 

estimate of  t h e  upper bound o f  t h e  corresponding general ized modal 

displacement spectrum, QSa, i n  terms of t h e  as-yet unknown i n i t i a l  modal 

ve loc i ty ,  v oa Once v has been determined, t h e  generalized modal oa 
displacement spec t ra ,  Q fo r  s = 1, 2, - * *  S, and a = 1, 2, * * -  ~a ' L 

can be combined t o  e s t a b l i s h  a bound f o r  t h e  member loads.  

C. DETERMINATION OF THE IiiITIAL MODAL V-EIiX.ITi vOp. 

An ana lys is  of t h e  launch vehicle  with some representat ion of  t h e  

spacecraf t  is usual ly done by t h e  launch vehicle organization f o r  t h e  

s t r u c t u r a l  design o f  t h e  launch vehic le ,  o r  pa r t  of it. To properly 

design the  pa r t  of t he  launch vehicle  at t h e  in t e r f ace  with t h e  space- 

c r a f t ,  t h e  reac t ion  loads from t h e  spacecraf t  t o  t h e  launch vehicle  must 

be introduced i n  t h e  analysis .  Since these  loads a r e  almost e n t i r e l y  

due t o  t h e  fundamental cant i levered modes of  t h e  spacecraf t ,  a simple 

model of t he  spacecraf t  such a s  a two-mass model i s  adequate. Note 

t h a t  t h i s  simple spacecraf t  model i s  used f o r  t he  design of the  launch 

vehicle  a t  i t s  in t e r f ace  with the  spacecraf t ,  but i s  not intended t o  

be used f o r  t h e  d e t a i l  design of t he  spacecraf t .  However, t h i s  two- 

mass model is useful  f o r  checking the  launch vehicle  da t a  and can a l s o  

be used t o  detezmine t h e  weighting f ac to r  WE defined l a t e r .  



The o r i g i n a l  launch vehicle  forc ing  funct ions aa used f o r  t h e  

launch m h i c l e  ana lys i s  arc given by a set o f  components {F ( t  ) expressed I i I 
i n  t h e  physical coordinate  system xyz and appl ied at  given loca t ions  of i 
t h e  launch vehicle  s t ruc tu re .  The modal analys is  done on t h e  launch I 

i .- 
vehic le  wZth any spacecraf t  o r  dummy provides,  i n  e f f e c t ,  a new system I 

o f  coordinates,  i .e., t h e  @?nerdired coordinates qc ( t  ) , t h a t  are used 

t o  express new components of t h e  forcing functions as a set o f  general ized I 

forces  Fc(t) .  I n  e f f e c t ,  F (t) is m o t h e r  d e f i n i t i o n  o f  t h e  same forc ing  
I 

C 
iunct ions F ( t )  . Therefore, one can use t h i s  set {Fc( t )  1 t o  represent  

J 
the forcing funct ions without t h e  need o f  knowing t h e  physical  components, 

nor t h e  loca t ion  o f  t h e  o r i g i n a l  forc ing  functions. Note t h a t  t h i s  

observation holds only because an ana lys is  o f  t h e  launch vehicle  with 

a d w  spacecraf t  has already been done. 

Any fUrther change of  modes, i f  necessary, w i l l  simply change t h e  

set  IF^(^) by a modal transformation. For example, t h e  present  method 

requi res  t h e  use of t h e  modes of  t h e  launch vehic le  loaded only by a 

r i g i d  mass. Therefore, t h e  components { ~ ~ ( t  ) I  of t h e  forc ing  funct ions 

with respect  t o  t h e  r i g i d  mass loaded launch vehicle  modes a r e  

where [v] is t h e  modal matrix t h a t  transforms the  e l a s t i c a l l y  loaded 

launch vehicle  t o  t he  rigid-mass loaded one a s  shown i n  Appendix C. 

Similar ly,  t h e  generalized coordinates { q e ( t ) I  of t h e  r i g i d  mass 

loaded launch vehicle  a r e  obtained from t h e  coordinates ( q c ( t ) l  of t h e  

e l a s t i c a l l y  loaded launch vehicle  by Equation (C-18) o r  Equation ( C-20) 

of Appendix C. 

The unknown i n i t i a l  modal ve loc i ty  v can be determined from 
011 

t he  requirement that* the  "actual" forcing function and the  "idealized" 

forcing function produce iden t i ca l  bounds f o r  t he  modal displacement 

spectra .  Information f o r  t h e  "actual" forcing function can be obtained 

e i t h e r  from an i n i t i a l  ana lys i s  done on a s implif ied model of t h e  

spacecraft-launch vehicle  combination, o r  from recorded f l i g h t  response 

data  f o r  another spacecraf t .  It i s  bel ieved t h a t  the minimum required 



i n f o r m t i o n  is th ree  degrees of freedom st t h e  spacecraft-launch vehicle  

in te r face .  The knowledge of  more degrees of freedom improves t h e  

de f in i t i on  of vm. In  cese  o f  an avai lab le  i n i t i a l  ana lys i s ,  t h e  

knowledge o f  t h e  modal response-time h i s t o r i e s  f o r  each mode leads  t o  

t h e  bes t  es t imate of  vOe. For t h e  last case,  t h e  peak value of t h e  
P t r a d i t i o n a l  displacement shock spec t ra ,  DL, is ca lcu la ted  f o r  t h e  modal 

acce lera t ion  response GL( t )  of  t h e  r i g i d  m a s s  loaded launch vehicle  a s  

shorn by Equations (28) and (29). 

P Final ly,  it should be noted t h a t  De w i l l  need t o  be computed only 

once f o r  each launch vehicle  mode and each f l i g h t  event o f  i n t e r e s t .  

Thi:, pa r t  of t h e  computation w i l l  ;.emain t h e  same as long a s  t h e  launch 

vehicle  and t h e  forcing functions a r e  not changed. 

In t h e  derivat ion done s o  f a r  and i n  what follows, r i g i d  mass 

loaded launch vehicle  modes a r e  used. These modesareobtained by the  

method of Appendix .C, o r  d i r e c t l y  from t h e  launch vehicle  ana lys is  i f  

t h e  spacecraf t  was represented by a r i g i d  nass ,  as may be t h e  case 

f o r  preliminary launch vellicle design. 

B 
k 

1. Estimate of vOQ From t h e  Modal Response i 
Assuming now t h a t  t h e  time h i s t o r i e s  iL(t), L = l., 2, , L f o r  

t h e  rigidly-loaded launch vehicle  a r e  ava i lab le  from a previous launch 
P 

vehicle  ana lys is ,  and t h a t  DL ( u p ,  t2) represent ing t h e  peak of t h e  modal 

displacement spectrum D ( w 2 ,  c 2 )  f o r  each mode has been evaluated, then 
P 

VOR can be determined by requi r ing  t h a t  DL be equal t o  its counterpart ,  

Q:, derived from Equation (23)  f o r  vsa + 0. This is i l l u s t r a t e d  i n  
P 

Figure 3-2. To derive Q f o r  R # 0, t h e  shock spectrum Q p. is computed 

f o r  each of the  launch vehicle  e l a s t i c  modes R = 7, 8, , L from Equa- 

t i o n  (23) i n  the l i m i t  a s  psa + 0. Appendix D gives t h e  proper values 

of t h e  modal shock spec t r a  f o r  t h e  case when R = 0, t h a t  is, f o r  

L = 1, * * * ,  6. 



Figure 3-2. Modal Displacement Spectra Dl and Qa 
for a Launch Vehicle Mode 1 

3-lh 



The quant i ty .  Lim (Dm), of Equation ( 2 5 )  i s  r e a d i l y  evaluated by 
u 4 
-ea - 

s u b s t i t u t i n g  t h e  following parameters i n  Equations (21) and (22):  as 

%a + 0, and R # 0 

A s  seen from Equation (261, t h e  displacement shock spectrum of Equa- 

t i o n  (25) is dependent upon t h e  value of  R = w / w  The peak value of  
P P 

1 2' P 
QL, labeled QL, occurs f o r  R -+ R . Finding t h e  exact  value of R t h a t  

maximizes Q is r a t h e r  involved ana ly t i ca l l y .  Only an approximate II 
est imate  w i l l  be given here.  

Considering t h e  spec i a l  case when 0 and L~ of Equation (26)  a r e  n 
assumed negl ig ib ly  small ,  we 1'; nd t h a t  



where 

(R + 1 )  f o r  r = 1 

r 
( R  - 1) f o r  r = 2 

By inspection o f  Equation (27) ,  it is concluded t h a t  t h e  peak occurs 
P f o r  r = 2 and R = 1. The approximation t h a t  8 i n  Equation (26) is  

negl igibly small, i s  o f  t h e  same order  as t h e  approximation t h a t  t h e  

imaginary pa r t  of t h e  so lu t ion  of Equation (15) is negl ig ib le ,  both of 

which a r e  acceptable. The exact so lu t ion  was evaluated from t h e  analog 

simulation of Appendix A, i n  which t h e  maximum of Dm= occurred within 
P b e t t e r  than 1% from R = 1. For R = 1, Equations (25) and (26) y i e l d  

the  following expression f o r  t h e  i n i t i a l  modal ve loc i ty  and f o r  wl # 0: 

where e = 2.718 . 
P 

Instead of t h e  modal displacement peak ~ ~ ( w ~ ,  6 ), t h e  modal 
7-. 2 

acce lera t ion  peak ~ ' ( w  5 ) may be used. A t  t h e  peak of t h e  displace- 
2 2' 2 2 P 

ment, t h e  two quan t i t i e s  a r e  r e l a t e d  by w D ( w  
P = A ( W  E 2 ) .  Thus, 2 e 2' 52) e 2' 

t he  following a l t e r n a t e  expression f o r  v i s  used, noting t h a t  wl - o e - b'2: 

for  w # 0 and where 5 i s  t h e  damping used i n  calculatirlg t he  accelera-  
1 

t i o n  shock spec t ra  A t  :)E t t ( t) .  
A s  shown i n  Appendix D, f o r  w = 0 Equation ( 2 9 )  becomes - 1 

C) 
L .  Estimate of v From Physical In te r face  Response 011 

I n  t h e  absence of a v a i l a b i l i t y  of ic( t ) ,  a s e t  of i n i t i a l  nodal 

ve loc i t i e s  v can a l so  be obtained i n  a manner s imi l a r  t o  t h a t  of 
0 a 



Reference 3-1. It is  assumed t h a t  t '  r time h i s t o r i e s  from an ana lys is  

o r  f l i g h t  da t a  of an 3 degrees of freedom a t  t h e  launch vehicle/spacscraf t  
0 

i n t e r f ace  a r e  known f;>r another snacecraf t  o r  a dummy one. 'Ihe shock 

spec t ra  Si ( i  = 1, 2, N ) f o r  t h e  N degrees of f16eedom a r e  ca lcu la ted ,  
0 0 

a s  t yp ica l ly  represented by t h e  s o l i d  l i n e  of Figure 3-3. 

Next it i s  assumed t h a t  t he  mode shapes 4 of  t h e  s t r u c t u r e  corre- 
n 

sponding t o  t h e  ava i lab le  i n t e r f ace  acce lera t ion  a r e  a l s o  known. Then 

each mode i s  given an i n i t i a l  ve loc i ty  vOn and the  t o t a l  i n t e r f ace  

acce lera t ion  i s  ca lcu la ted  from: 

. . -5 w t 
R i ( t )  = - w v  4 e n n 

n On n ( a  s i n  w t + b cos w t )  
n d n d 

n=l 

where 

W = I d  
d n X-g 

The value of  v can be determined by t r i a l  and e r r o r  so  t h a t  
o!? 

t h e  shock spec t ra  of R i ( t )  above, represented by the  dashed l i n e  i n  

Figure 3-3, envelopes the  shock spec t ra  of t he  r e a l  response. Since 

only a small number of vehicle  modes a r e  s ign i f i can t ly  contr ibut ing t o  .. 
Ri,  one can choose a s e t  o f  modes < N t o  simplify t h e  calculations. 

The important c r i t e r i a  is t h a t  t h e  vOn arid t h e  mode re ta ined  give an 

envelope of  t h e  r e a l  shock spectra .  

F ina l ly ,  t he  i n i t i a l  modal ve loc i ty  vOk f o r  t he  r i g i d  mass loaded 

launch vehicle  i s  obtained by t h e  transformation of Equation ( X I ,  

where a bound f o r  vOk w i l l  b e  obtained by tak ing  root  sum square 

values,  s ince the  sign of  v is not  re ta ined .  On 
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Figure 3-3. Shock Spectra Matching and Envelope 



Note t h a t  t h i s  method i s  only a fall-back method, and t h a t  t h e  model 

response method of  t he  previous sec t ion  i s  t o  be preferred.  

D. TUNING 

During t h e  e a r l y  stages of design, t h e  spacecraf t  and launch 

vehicle  modes and frequencies a r e  obtained from analyses t h a t  usua l ly  

contain a l a r g e  degree of  uncertainty.  To account f o r  such unce r t a in t i e s ,  

one m y  introduce an a r t i f i c i a l  tuning between t h e  spacecrafl; an3 launch 

vehicle  modes. Unlike o ther  methods, t h e  present approach makes a r t i f i -  

c i a l  tuning possible  and easy t o  implement because Equation (23)  is 

inexpensive t o  evaluate and is  v a l i d  f o r  any p a i r  of spacecraf t  and launch 

vehicle  modes, regardless  of t h e  proximity of t h e i r  respect ive 

frequencies.  

Two forms of a r t i f i c i a l  tuning have been iden t i f i ed :  global and 

loca l .  In global tuning, t h e  e n t i r e  spectrum of  launch vehicla  fre-  

quencies i s  incrementally -.caled i n  ei the:  d i rec t ion  ; . r . ; .  50 t he  

spacecraft  frequency spectrum. For each increment, a global rc5pnr~se 

is  computed arid used a s  a measure f c r  determininc the  worst case f c r  

design purposes. In  t h i s  scheme, tuning is achieved by f in J ing  the  - 
mount of r e l a t i v e  ;cal.ing t h a t  maximizes Q. Clearly,  l i a i t s  on 

the  allowable r e l a t i v e  sca l ing  ~ u s t  be se lec ted  i n  advance, and the  

senrch f o r  the  maximum 2 conducted within these  l i m i t s .  

In t h e  l o c a l  tuning, t he  response i s  maximized for each spacecraf t  

mode, one at a time. Thi:: i s  achieved by allowing the  nec.rest lallnch 

vehicle frequency t o  coincide with t h a t  of the spacecraf t  frequency 



under consideration, ( i  .e. , R -* 1) provided that  the  two were 

originally separated by no more than a preselected amou~t .  Other 

schemes for tuning can be a l s o  devised. 



SECTION IV 

SPACECRAFT WMBER LOADS, DISPLACEMENTS, AND ACCELERATIOFI 

A. MEMBER LOADS 

Wher, t h e  t i m e  h i s t o r i e s  o f  the s p a c e c r a f t  genera l i zed  modal 

displacement q ( t )  a r e  determined as a r e s u l t  of a t r a n s i e n t  a n a l y s i s ,  
S 

one can express  t h e  v e c t o r  o f t h e  s p a c e c r a f t  modal member loads ,  

{ f  (t) lA, f o r  each member A due t o  motion i n  mode s i n  t h e  general  
a s  

form (Reference 2-1) : 

where 

s = 1, 2, "', s 

In  a d d i t i o n ,  t h e  t o t a l  lcad vec to r  due t o  c o n t r i b u t i o n s  <)f a l l  space- 

c r a f t  mt~des is 

where 

= matr ix  o f  fSorce c o e f f i c i e n t s ,  whose elements a r e  t h e  

ath fo rce  conrponent i n  member A due t o  a u n i t  d i sp lace -  

ment i n  t h e  bth degree of freedom 

{@bS1 = a s  be fore ,  s p a c e c r a f t  mode shape a t  t h e  bth degree- 

of-freedom 

= i s  recognized a s  t h e  vec to r  o f  modal s t r e s s e s  f o r  mode s .  

I n  t h e  p resen t  approach, t h e  t ime h i s t o r i e s  o f  t h e  s p a c e c r a f t  

genera l i zed  modal displacements q ( t )  i n  Equations (32)  and (33)  a r e  
S 



P 
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I ,  

not computed for  the .mt i re  (S + L) mat. '*t ical  space. Instead, they 

are replaced by an estimate of t he i r  upper bound, Qs, so tha t  the 

correspondin3 bound on the  spacecrah modal member loads, {F-lA is 

written ana..ogous t o  Equation (32) i n  the form: 

The bound, Qs, for  the  spacecraft generalized modal displacement 

is expressed in terms of the  discrete modal displacement spectra, QsR 

of Equation (23) for  each of the (S  x L )  discrete mathematical sub- 

 paces. Since each Qsa results from coupling between a spacecraxX mode 

s and only one launch vehicle mode, and since a complete representation 

of the launch vehicle includes more than one mode, say L modes, con- 

tributions due t o  all  L modes should be included. Clearly, because 

Equation (23) does not contain information regarding time-phasing among 

modes, only a bound can be computed, and is provided by summation over 

absolute values or i n  the  root-sum-square sense. 

Thus, Qs i s  estimated by 



6 

~. - .  . .-- -- . 

~ ~ ( w ~ ,  ug) is a weighting m e t i o n  tha t  can be used t o  account for  . 

t i m e  phasing between the launch vehicle modes. This weighting flurction 

can be detem&ned from the  available transient response of the simplified 

t r 0 - ~ s  model of the apaeecraft o r  from matching of the shock spectra 

of the mass-loaded launch vehicle interface. 

Analogous t o  the  calculation of Qs, a bound on the magnitude of 

the  t o t a l  vector of member loads due t o  a l l  spacecraft modes 

s - 1, 2, * - - ,  S is  found from: 

Member loads  computed by Equations (35 ) and ( 3 8 )  are, o f  course ,  much more 

conservat ive  than t h o s e  computed by Equations ( 36), ( 3 7 ) ,  ( 3 9 ) ,  and 

(40) .  Such excess ive  conservatism may he unnecessary,  e s p e c i a l l y  i f  

each Q f o r  a s p a c e c r a f t  mode s i s  a r t i f i c i a l l y  tuned t o  t h e  n e a r e s t  
S 

launch v e h i c l e  mode. 
4 .  

B. DISPL.ACE!.WNTS AND ACCELERATIONS 

An e s t i m a t e  o f  t h e  bound on t h e  displacements and a c c e l e r a t i o n s  

a s s o c i a t e d  wi th  any o r  all degrees-of-freedom used i n  t h e  s p a c e c r a f t  



' * '  'It . ,.;. 
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mdal can ba obtained i n  a aamer s w l a r  t o  the nuember loads of 

Eqyation (34) .  Onca Q, has been established accordiw t o  Equations ( 35). 
(36).  or (37), a bound on the spacecraft modal re lat ive  displacements 

(Dbs 1, or absolute accelerations are found, respectively from: 

Finally, a bound on the spacecraf't t o t a l  displacement and acceleration 

degrees of fkeedom, and {%I, is written analogous t o  Equa- 

t ions (38) through (40).  For the displacements, 



Similarly, for the accelerations, ORIGINAL PAW# @ 
OF POOR ~ l J ~ f P x r '  

C. FLOW DIAGRAM 

Figure 4-1 summarizes t h e  d i f f e r en t  s t eps  taken from t h e  launch 

vehicle  da t a  t o  t h e  computation of bounds f o r  the  member loads,  dis-  

placements, and acce lera t ions .  





SECTION v 

The primary dr8Jbaclt of the or ig inal  shock spectra aethod 

(Reference 1-1) is t h a t  it can rerrult i n  very conservative answers, 

and therefore overdesiga. It is eleo  very dependent upon t h e  analyst 's  

judgmnt. However, it has the advsntagh of low cost  of analysis  and 

yie lds  bounds that can be readily used f o r  design. The t rans ient  

analysis,  on the  other hand, i s  accurate, but i s  very expensive and 

d i f f i c u l t  t o  implement because of  its sens i t iv i ty  t o  design change. The 

generalized shock spectra approach described i n  t h i s  paper, although 

still an approximate procedure, combines the  advantages of low cost  

while maintaining a very reasonable accuracy. In  addition, unlike t h e  

method of Reference 1-1, it is substant ia l ly  l e s s  dependent upon t h e  

analyst 's in tu i t ive  judeplent i n  pair ing spacecraft and launch vehicle 

modes. Because of i t s  low cost ,  the  tuning e f fec t  of launch vehicle 

modes with spacecraft mode can be very eas i ly  explored and used fo r  

design t o  es tabl ish  worst case. Finally, t h e  procedure is  currently 

being applied t o  t h e  Galileo spacecraft loads analysis  w i t h  very accept- 

able resul t  s. 
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APPENDIX A 

ANALOG SOLUTION OF THE EQUATIONS OF MOTION 



The analog exact solut ion of' Equation (13)  is given here t o  ve r i fy  

t h e  ana ly t i ca l  solut ion of Equation (15)  and Appendix B. The equations 

of motion f o r  the  f r e e  v ibra t ion  cf t h e  system i n  Equation (131, o r  

t h a t  of Figure A-1, are 

where 

p = r a t i o  of  a spacecraf t  mode e f f ec t ive  mass m t o  a launch vehic1.e 
2 

mode corrected e f f ec t ive  mass y; a l so ,  P = us, of' Equation (13)  

w = corrected na tu ra l  frequency of one lsunch vehicle  mode 
1 

w = cant i levered na tura l  frequency of a spacecraf t  mode 
2 

C1 = launch vehicle modal damping 

&2 
= spacecraf t  modal damping 

x = mass 1 response ( u n i t  mass) 
1 

x = mass 2 response (mass p )  
2 

The so lu t ion  of Equations (A-1) and (A-2) t o  an impulse force 

appl ied on mass 1 i s  sought. Equivalently, t he  i n i t i a l  conditions f o r  

Equations (A-1 ) and (A-2) a r e  

where F i s  a constant.  
0 

To apply the  i n i t i a l  conditions of Equation (A-3), t he  r i g h t  

hand s ide  of Equations (A-1) and (A-2) must be 



~ i g u m  A-2 shows t h e  analog diagrem correeponding t o  Fquations (A-1) 

and (A-2) solved by applying i n i t i a l  condi t ions of Equation (A-3). Fig- 

ure A-3 shows t h e  analog diagram corresponding t o  Equations (A-1) and 

(A-2) solved by applying t h e  impulse forces  of Equation (A-4). These 

two c i r c u i t s  have been shown t o  give i d e n t i c a l  response time h i s t o r i e s .  

A l l  the  r e s u l t s  shown here have been obtained using Figure A-3. 

The following parametric vkr ia t ions  were made: 

(1 )  Frequency r a t i o :  

f was held at 50.00 Hz and f was varied from 40.00 142 
1 2 

t o  60.00 Hz. 

(2) Dampings: El = 0.01, 0.02, 0.03 and E2 = 0.01, 0.02, 

0.03 maintaining tl + 5, = constant = 0.04. 

( 3 )  Mass r a t i o :  p = 0, 0.001, 0.01, O . i ,  1.0. 

Figure A-4 shows an example of t h e  time h i s t o r i e s  of t h e  spring 
2 

force per  un i t  mass wpx2(t) f o r  mass 2 versus time f o r  a l l  t he  param- 

e t e r s  R ,  5, C2, and 11. *ne quant i ty  o f  i n t e r e s t  f o r  s t r u c t u r a l  loads is  
2 

t he  l a rges t  peak value w: Dmax of w x ( t )  of mass 2 ,  which i s  a l s o  t h e  2 2 
peak of t h e  t o t a l  accelerat ion am of mass 2. "he peak value was read 

from f igures  s imi l a r  t o  Figure A-4. Figure A-5 i s  an example of p l o t s  

of t h e  peak val-ue w2 D versus t h e  frequency r a t i o  H.  The r e s u l t s  f o r  
2 max 

various values of t h e  mass r a t i o  p and Gwnpings t; and 5,, keeping 
1 C 

El + C 2  = 0.04 a r e  tabula ted  i11 Table A - 1 .  

The s o l i d  curve on Figure A-5 h:is t.?cn c~btzined from a sf vpl i f i e d  

Equation ( 2 3 )  where t3 = 0 and where 5 has been dropped in  t he  dampecl 
- n 

n a t u r ~ l  frequencies w . n 

1 -u (26 /A~)  
a = u 2 ~  e 

m 2 max 



where 

I n  a d d i t i o n ,  

t a n  r 
s i n  p r - s i n  r = 2 

2 2 J1+- 

has  beer used t o  show t h a t  t h e  r e s u l t s  depend on t h e  sqGare r o o t  o f  tk.e 

mass r a t i o  p s i n c e  A 9  con ta ins  p. The c o n c h ~ s i o n s  are as fol-lows: 

( 1 )  For a given value of mass r a t i o  p ,  t h e  maximum a c c e l e r a t i o n  

occurs  f o r  almost equa l  f requencies  w 
1 

= u2 as i s  ev iden t  

from Figure  A-5. 

( 2 )  Within a n  e r r o r  o f  1% c r  l e s s ,  t h e  peak a c c e l e r a t i o n  

depends un t h e  sum E, 1 2  + 5 and not  on each s e p a r a t e  

damping. 

( 3 )  The s o l i d  curve on Figure  A-5 shows t h a t  Equation (A-5) 

Is an e x c e l l e  L es t rmate  o f  t h e  peak va lue  o f  t h e  

a c c e l e r a t i o r  . 
The reduct ion f a c t o r  C as def ined i n  Reference 1-2 can be obta ined 

as fol.lows: 

from the  anelqg d a t a  o f  Table A-1 .  



It can a l s o  be c a l c u l a t e d  !A-5)  i n t o  

Equat inn (A-6 1 . 

where ASl, B, and a a r e  de f ined  ss f o r  Equatioll ( A - 5 ) .  Equat.ic;n (A-7:  
provides  t h e  frequency dependence f o r  C. 

Figure A-6 shows a comparison between t h e  m a l o g  d a t a  and Equa- 

t i o n  (A-7) as a funct ion of e f o r  va r ious  dampings E .nd e2, keeping 
1. 

tl + t2 = 0.04, and f o r  R = 1. This f i g u r e  shows t h a t  q u a t i o n  (11-7) 
i s  e very good ds t imate  of C and t h a t  C i r  v i r t u a l l y  independent of t h e  

makeup o f  t h e  sum 5 + t2. Only one curve i s  shown f o r  C as cn lcu la ted  

5y Equation ( A - 7 ) .  This i s  t r u e  because t h e  value  of C ,  when F, and 
1 

C2 are v a r i e d  whi le  kceping 5 + C2 = 0.04, g ives  a d i f f e r e n c e  t o o  srrlal.1 

t o  be p l o t t e d .  



Figure  A-1. Launch Vehicle - Spacecraf t  Modal Floclel 

A- 6 
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Figure A-2. AnaiL>g Schematic f o r  Initial Velocity Solution 

A-7 



Figure A- 3. Analog Schematic for  Impulse Bolut i on  

A-8 



Figure A-4. Mass Number 2 Response t o  Unit Impulse 



Figure A-5. Generalized Shock Spectra 

A-10 
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APPZ;CTX B 

ANALYTICAL S O L U T I O N  OF THE E Q d A T I O N S  OF MOTION 



Analyt ical  so lu t ion  is derived here  i n  d e t a i l  f o r  t h e  coupled 

equation of motion (13): 

An analog so lu t ion  t o  Equation (B-1) above has been given i n  Appendix A. 

The general so lu t ion  takes  a complex form, with r e a l  and imaginary 

pa r t s .  One approach t o  obtaining t h e  a n a l y t i c a l  so lu t ion  t o  Equa- 

t i o n  (B-l) is  by first der iv ing  and using t h e  modal coordinates  o f  t h e  

undamped system i n  Equation (B-1) t o  diagonal ize  t h e  mass and s t i f f n e s s  

matrices.  This,  however, w i l l  not diagonal ize  t h e  damping matrix,  bu t  

t he  commorl approximation of l eav ing  out t h e  off-diagonal terms w i l l  

r e s u l t  i n  r e t a in ing  only t h e  r e a l  p a r t  o f  t h e  so lu t ion .  This i s  an 

acceptable  approximation f o r  small damping. 

L e t  us f i r s t  wr i t e  t h e  frequency equation f o r  t h e  damped system 

s ince  proper t ies  of t h e  damped frequency equation w i l l  be used. The 

form of t h e  so lu t ion  is  

Subs t i t u t i ng  i n  t h e  left-hand s ide  of Equation (B-1) r e s u l t s  i n  t h e  

damped frequency equation : 



The undsmped frequency equation is then obtained by l e t t i n g  

El = E p  = 0: 

where 

Tbe roots to Equation (B-3) are o = Q o and un2 = Q w i n  which Q 
nl 1 2 2 2 1 

and 0 are defined by 2 

and 52 w and ARw respec t ive ly ,  a r e  t h e  cen te r  and t h e  bea t  frequency: 
0 2 2 ' 

Associated with t h e  frequencies w and w obtained above a r e  
nl n2 

two undamped mode shapes, r'espectiveiy defined by 



" I '  ; ' : . , . - ,  
* .:P'.'%..: .- , ,G' . , ,---.- = , a - t  ? :. 

-we--- 

. < -- - & -- -. 

(Y,I = {$;l} ------ and {Y*I = [$;l} -..---I 

.. . 

Next, the classical coordinate transfomnation is applied to x 1 and x2 

to diagonalize the matrices of Equation (B-1) : 

This results in: 

+ 

where 

2 2 
( 1  - + s ]  

are t h e  generalizeti mans. 



It i s  :een t h a t  t h e  off-diagonal t e m a  i n  t h e  damping matrix w i l l  

vanish when t h e  damping r a t i o  i s  proportional t o  t h e  frequency r a t i o .  

No such l imi t a t ion  w i l l  be imposed, and therefore ,  E IF. # w /w How- 
1 2  1 2 '  

ever,  t he  magnitude of  t h e  off-diagonal terms w i l l  be assumed small 

enough t o  be neglected i n  subsequent calculat ions.  This is equivalent t o  

neglecting the  imaginary pa r t  of t he  so lu t ion ,  a commorrly used approxi- 

mation t h a t  r e s u l t s  i n  decoupling Equation (B-91, so  t h a t  

where now: 

Furthermore, from the  theory of  equation, t he  sum of t h e  roots  of t h e  

damped frequency equation; Equation (B-3), i s  equal t o  t he  coef f ic ien t  
3 of (p/w2) . Therefore: 

where 



The foll.owing approximate r e l a t i o n s h i p  w i l l  be  u s e f u l :  

'nlwnl " 'n2@n2 0 20w2 

where 

Equations (B-10) may now b e  solved f o r  E p r e s c r i b e d  f o r c e  system 

F O R ( t ) .  I h e  s p e c i f i c  case  when ~ ~ ~ ( t )  i s  an i n p u l s e  d e l t a  func t ion  of  

amplitude F a p p l i e d  a t  t = 0 is  discussed.  Iiy d e f i n i t i o n ,  t h e  impulse 
0 R 

~ ~ ~ ( t )  = F 6 ( t )  is  t h e  response ui' an i n i t i a l  v e l o c i t y  v OR 011' '~umerical.ly 

FOR = vOll f o r  an impulse a p p l i e d  t o  a wit mass, a s  it is  t h e  case  f o r  

Equation (£3-9 ) . The homogeneous s o l u t i o n  o f  Equation (B-10) i s  : 

- 
'nrwnrt - 'nr u t  n r  - 5 = A  e s i n ;  t + B  e cos  w t 

r r n r  r 11r 

- 
where unr = unr J1 - 2 

'nr 
= damped n a t u r a l  frequency and A B a r e  

r r 
cons tan t s  ( r  = 1 f o r  launch v e h i c l e ;  r = 2 f o r  t h e  s p a c e c r a f t ) .  

The i n i t i a l  cond i t ions  f o r  t h e  system a t  t = O a r e  

q 0 )  = vOL and i 2 ( 0 ) = 0  

By combining t h e  transformatiom o f  (B-8) wi th  t h e  genera l  

s o l u t i o n  of  (B-13) and t h e  i n i t i a l  cond i t ions  i n  (B-14 ) , we have 
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*. ~ ~ ( t )  = e s i n  G t 

8 

w n 1 

- - C 
W 
n2 

2 

x2( t )  = 

v~ [ 2 -'nl"l' - 
e s i n  w t (n,2 - n;) - n l  

i .  

1 
! 

! (B-15) i 



APPENDIX C 

RECOVERY OF LAUNCH VEHICLE M3DAL PROPERTIES 



A. EQUATIONS OF MOTION 

, In t h i s  appendix,equations are derived whereby t h e  modes and modsf 

responses of the launch vehic le  with an i n t e r f ace  loaded by only a 

r i g i d  mass can be recovered from t h e  given modes and modal responses of 

t h e  same launch vehicle  whose i n t e r f a c e  is loaded by an e l a s t i c  and a 

rigid-mass simulation of t h e  spacecraft. Let t h e  subsc r ip t s  S denote 

cant i levered spacecraf t  modes, and t h e  subsc r ip t s  C denote t h e  composite 

launch vehicle  h e - f r e e  modes with an e l a s t i c a l l y  loaded interface, see 

Figure C-1. The motion of t h e  t o t a l  composite system of spacecraf t  =d 

launch vehic le  i n  Figure C-1 subjected t o  an ex te rna l  force IF i s  
3 

governed by t h e  set  o f  equations: 

where 6 a r e  ava i lab le  from t h e  launch vehicle  analysis .  
C 

The modes of t h e  launch vehicle  with a rigid-mass can be computed 

from Equation (c-1) by subt rac t ing  the  modal reac t ions  of t he  e l a s t i c  

s p a c e x a f t  a t  t he  in te r face .  This is analogous t o  Equation (2) of  t h e  

main t e x t  i n  which the  s ign of t h e  spacecraf t  reac t ion  force {F. i s  
1 

negative s ince  t h e  spacecraf t  t h a t  w a s  o r i g i n a l l y  put on t h e  launch 

vehicle is now being removed. In t h i s  case,  t h e  ceneral ized coordinates 
1 

a r e  denoted by { q  1 instoad o f  {q 1 :  
C c 

F r o m  Equat i 9ns ( 8 ) and ( b ) : 

[ 1 = [11. . I 
11 REs C [mi 1 



INTERFACE I 

Figure  C-1. Composite Launch Vehicle With E l a s t i c a l l y  
Loaded I n t e r f a c e  



Also, f r o m  Equation ( 3 )  of  the main t e x t ,  t h e  spacecraf t  is governed by: 

Equations ( C-2, C-3, and C-4) are nov combined t o  give th;  governing 

cqust ions f o r  t he  rigid-mass-loaded leunch vehicle  response: 

I n  a concise form, Equation (c-5) is wr i t ten  as: 

and i ts undamped homogeneous pa r t  is wr i t ten  as 

B. EIGENVALUE SOLUTION 

In general,  i f  t h e  system of  composite modes, C, conta,,;ed 

S-spacecraft e l a s t i c  modes, and L-launch vehicle  rigid-and-e1a;tic 

modes C = S + L, t h e  undamped eigenvalue so lu t ion  of Equation (c-6) w i l l  

r e s u l t  i n  (L + 3s) eigenvalues R 
L' %l, 

Qs2 a d  associated eigenvectors 

NLl, {VS,l, {VS2). 

- O f  these,  two S-roots w i l l  be repeated, Rsl - Rs2, and a r e  asso- 

c i a t ed  with t h e  e l a s t i c  modes of t he  spacecraf t .  The remaining L-roots 

a r e  associated with t h e  rigid-mass-loaded launch vehicle  free-free modes, 



some of which vill comapond to rigid body modes vith sum frequencies, 
and the mmining modes will correspond to elastic modes with nonzloro 

frequencies. The (L + 26) set of modes collectively referred to as [v] 

wiU transtom Equation (c-6) to  the diagondl form 

with 

C. MODE SHAPES AND ACCELERATIONS AT THE INTERFACE 

The acce lerat ion  t i i ]  at t h e  in ter face  can be expressed i n  e i t h e r  

t h e  f  q' 1 o r  fQ1  coordinates. Thus, 

where [$i] and are the  mode shapes a t  t h e  in ter face  i n  t h e  {q') and 

the (C.1 coordinates,  respect ive ly .  

Because of  Equation ( C-9),  

then 



.. 
I>. MODAL ACCELERATIOH TIME HIS'NRY (Q ( t )  L 

The time history of the  modal acceleration corresponding t o  the 

n e w l y  obtained rigid-mass-loaded launch vehicle  modes (Q) are obtained 

h.om Eqwtion (C -9 )  so that  
- 

-- . 

(3 = [v-l](iV} ( C-12 1 

The inverse [Ifg1] i n  Equa=ion (c-12) need not be performed. It can 

be found fn,m the orthogonality condition that  led to  Equation (c-8): 

s o  that 

Therefore,  

However, r a t h e r  than I{* 1 are u s u a l l y  a v a i l a b l e  from t h e  launch 

v e h i c l e  a n a l y s i s .  Computing (q* 1 as a t r a n s i e n t  s o l u t i o n  o f  Equa- 

tion (c-5) is  s t r a i g h t f o r w a r d ,  b u t  is both  c o s t l y  and Ilnnecessary. For 

t h i s  reason,  two approximate a l t e r n a t i v e  s o l u t i o n s  are shown next t h a t  

g ive  very accep tab le  accuracy at low c o s t .  

1. Approximate So lu t ion  1 

Since t h e  r ight-hard s i d e s  o f  Equations (c-1) and (C-5)  are 

i d e n t i c a l ,  they  may be ccfi~bined t o  y i e l d  the fol lowing exac t  express ion :  



r i g i d  body modes re - 0, t h e  last tuo terms of  Equation (c-15) 

are i d e n t i c a l l y  eero. However, f o r  t h e  e l a s t i c  modes, t hese  last two 

term are small because t ity exprcss  d i f fe rences  between t v o  q u a n t i t i e s  

of global charter having little dependence on t h e  presence o f  t h e  rela- 

tively mall spacecraf't. On account o f  t h i s  reasoning, t h e  last two terms 

of Equation (015) can be neglected with l i t t l e  l o s s  i n  accuracy. This 

implies : 

Now, Muat ion  (c-15) is  approximateb- wr i t ten  as 

which, when solved with Equation (c-14), y i e l d s  

The modal coordinates {q:) and {(lt) of t h e  e l a s t i c  simulation of* tire 
S 

spacecraf t  may be obtained from an  inexpensive t r a n s i e n t  so lu t ion  s ince  

they are usual ly small (of, t he  order of 3 t o  6 modes). In t h i s  case,  

t h e  l w e r  p a r t i t i c n  cf  Equatiur. (c-5) can lie solved f o r  {q:) and [<:I 
..I 

approxirately by replacing { q, 1 by { Gc 1 : 



The avpro%inurtion above i 8  acceptale because is aff'ected o n 4  t o  
the second oraer by o r  (6;). and also because the re  is no tuning 

between us and w since wc never contains us exactly. 
C 

Thus, Equation (c-18) is a l t e rna t ive ly  expressed as : 

2. Approximate Solution 2 

L e t  t he  subscripts  cR and cE, respectively,  denote the  subset of 

r i g i d  body modes and the  subset of e l a s t i c  modes cons t i tu t ing  the  t o t a l  

number of  t h e  composite modes c. Thus c = cR + cE. This second 

approximation is based on t h e  premise t h a t ,  except f o r  the  r i g i d  body 

modal accelerations { P R f  and {G' f ,  t h e  accelerat ion t i m e  h is tory  of 
cR 

a l l  t h e  e l a s t i c  composite modes a r e  negligibly af fec ted  by t h e  presence 

of the  e l a s t i c  simulation of the  spacecraft.  Therefore, f o r  the  e l a s t i c  

composite modes : 

However, for  the  r i g i d  body modes, Equation ( C - 1 )  gives 

Also, Equation (C-2 ) fo r  the r i g i  d-mass-loaded launch vehicle gives 



In the approximation o f  Equation (C-24). {;Is} is computed in the same 

manner f'rom Equation (C-19) of  the previous approximation. A s  such, 

Equations (C-21) and (C-24) along with Equation (C-19) provide an approxi- 

mate alternative t o  computing a l l  members of {a'}.  Then again, 

Equation (C-14) is used t o  compute (6). 
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APPENDIX D 

DISPLACFJENT SPECTRA FOR TIIE GENERALIZED 

R I G I D  BODY MODES 



' f 

I n  t h i s  appendix, an expression i s  derived f o r  t he  generalized 

modal displacement spec t ra ,  QsL, t h a t  should be used f o r  t ho  r i g i d  body I 
modes (E = 0 )  i n  place of Equation (23)  of t h e  main t e x t .  

From t h e  lower p a r t i t i o n  of Equation (13).  

where, according t o  Equation ( 1 4  1, 

The honogeneous so lu t ion  of Equation (D-1) having i n i t i a l  condi t ions 

x2(0) = xO and f 2 ( 0 )  = 5 is: 
0 

The pa r t i cu l a r  so lu t ion  of Equation (D-1) i s :  

- 
-~*w*(t-T) 

q ( T )  e s i n  G2(t - t )  a t  (0-4) 

where 

Thus, t h e  t o t a l  solut ion of Equation (D-1) i s  

Now, the  spacecraft  modal response q s ( t )  t o  r i g i d  body launch vehicle  

input (R = 0) i s  given by 



i l t h e  maximum of Equation ( D-6 ) . Therefore,  

Where again ,  R = 0 and x ( t  ) a r e  def ined by Equations (D-3) through 
2 

(D-5) 

- Jm 
s R 

Qsa - 
+ M s ~  

h 
The homogeneous s o l u t i o n  x ( t )  can be  ignored by s t a r t i n g  t o  

2 
compute t h e  f o r c i n g  funct ion w e l l  be fore  t h e  a c t u a l  even t ,  and only 

x 2 ( t )  

Equation (D-4)  needs t o  be considered.  Then Equation (I)-?) becomes 

max 

Q ~ E  = + M s ~ ,  jx; i t)J  
rnax 

Furthermore, by d e f i n i t i o n ,  1 x i ( t  ) lmax  i s  t h e  r e l a t i v e  displacement 

c l ~ i ~ c k  spectra of i l ( t )  = (1 + M ~ , )  q Q ( t )  

A'; = DP(1 + Ms,) = - (1 + MsQ) 
Ix;(t) l  max e w 2 

2 

P where Ak i s  t h e  a c c e l e r a t i o n  shock s p e c t r a .  Then 

This i s  t h e  same l i m i t  t h a t  Equation (23)  t a k e s  f o r  H -+ 0 .  Thus, 

where w = wl. 
9, 
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